1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
| using LD = long double; const LD pi = acos (-1.0); const LD eps = 1e-8; int dcmp (LD x) {return x < -eps ? -1 : (x > eps ? 1 : 0);} struct Point {LD x,y;Point (LD x = 0,LD y = 0) : x (x),y (y) {}}; struct Circle {Point O;LD r;Circle (Point O = Point (),LD r = 0) : O (O),r (r) {}}; typedef Point Vector; Vector operator + (Vector A,Vector B) {return Vector (A.x + B.x,A.y + B.y);} Vector operator - (Vector A,Vector B) {return Vector (A.x - B.x,A.y - B.y);} Vector operator * (Vector A,LD k) {return Vector (A.x * k,A.y * k);} Vector operator / (Vector A,LD k) {return Vector (A.x / k,A.y / k);} bool operator == (Vector A,Vector B) {return dcmp (A.x - B.x) == 0 && dcmp (A.y - B.y) == 0;} bool operator != (Vector A,Vector B) {return !(A == B);}
LD dot (Vector A,Vector B) {return A.x * B.x + A.y * B.y;} LD dis (Point A,Point B) {return sqrt ((A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y));} LD cross (Vector A,Vector B) {return A.x * B.y - A.y * B.x;} LD len (Point A) {return sqrt (A.x * A.x + A.y * A.y);} LD angle (Vector A,Vector B) {return acos (dot (A,B) / (len (A) * len (B)));} Vector proj (Vector A,Vector B) {return A * (dot (A,B) / dot (A,A));} Point foot (Point P,Point A,Point B) {Vector AP = P - A,AB = B - A;return A + proj (AB,AP);} Point reflect (Point P,Point A,Point B) {Point F = foot (P,A,B);return F * 2 - P;} Point rotate (Point P,LD theta) {return (Point){P.x * cos (theta) - P.y * sin (theta),P.x * sin (theta) + P.y * cos (theta)};} bool chk_on_line (Point P,Point A,Point B) {return dcmp (cross (P - A,B - A)) == 0;} bool chk_on_seg (Point P,Point A,Point B) {return chk_on_line (P,A,B) && dcmp (dot (P - A,P - B)) <= 0;} LD dis_seg (Point P,Point A,Point B) { if (dcmp (dot (B - A,P - A)) < 0) return dis (P,A); if (dcmp (dot (A - B,P - B)) < 0) return dis (P,B); return fabs (cross (P - A,P - B)) / dis (A,B); } Point ll_inter_pt (Point A,Point B,Point C,Point D) {return A + (B - A) * cross (C - A,D - C) / cross (B - A,D - C);} bool chk_ll_inter (Point A,Point B,Point C,Point D) {return dcmp (cross (B - A,D - C)) != 0;} bool chk_ls_inter (Point A,Point B,Point C,Point D) {return chk_on_line (ll_inter_pt (A,B,C,D),C,D);} bool chk_ss_inter (Point A,Point B,Point C,Point D) { LD c1 = cross (B - A,C - A),c2 = cross (B - A,D - A); LD d1 = cross (D - C,A - C),d2 = cross (D - C,B - C); if (dcmp (c1) * dcmp (c2) < 0 && dcmp (d1) * dcmp (d2) < 0) return true; if (dcmp(c1) == 0 && chk_on_seg (C,A,B)) return true; if (dcmp(c2) == 0 && chk_on_seg (D,A,B)) return true; if (dcmp(d1) == 0 && chk_on_seg (A,C,D)) return true; if (dcmp(d2) == 0 && chk_on_seg (B,C,D)) return true; return false; } bool SameSide (Point A,Point B,Point C,Point D) {return cross (A - C,D - C) * cross (D - C,B - C) < 0;}
LD area (vector <Point> &P) { int n = P.size (); LD res = 0; for (int i = 0;i < n;++i) res += cross (P[i],P[(i + 1) % n]); return res / 2.0; } bool is_convex (vector <Point> &P) { int n = P.size (); for(int i = 0;i < n - 1;++i) if (dcmp (cross (P[i + 1] - P[i],P[(i + 2) % n] - P[i])) < 0) return false; return true; } int in_Poly (vector <Point> &P,Point A) { int cnt = 0,n = P.size (); for (int i = 0;i < n;++i) { int j = (i + 1) % n; if (chk_on_seg (A,P[i],P[j])) return 2; if (A.y >= min (P[i].y,P[j].y) && A.y < max (P[i].y,P[j].y)) cnt += dcmp (((A.y - P[i].y) * (P[j].x - P[i].x) / (P[j].y - P[i].y) + P[i].x) - A.x) > 0; } return cnt & 1; } int in_convex_Poly (vector <Point> &P,Point A) { int n = P.size (); if (chk_on_seg (A,P[0],P[1]) || chk_on_seg (A,P[0],P[n - 1])) return 2; if (dcmp (cross (P[n - 1] - P[0],A - P[0])) > 0 || dcmp (cross (P[1] - P[0],A - P[0])) < 0) return 0; int l = 1,r = n - 2,res = -1; while (l <= r) { int mid = (l + r) >> 1; if (dcmp (cross (P[mid] - P[0],A - P[0])) >= 0) res = mid,l = mid + 1; else r = mid - 1; } if (chk_on_seg (A,P[res],P[res + 1])) return 2; if (dcmp (cross (P[res + 1] - P[res],A - P[res])) < 0) return 0; return 1; } auto convex_hull (vector <Point> &P) { int n = P.size (); sort (P.begin (),P.end (),[] (Point &x,Point &y) {return x.x == y.x ? x.y < y.y : x.x < y.x;}); vector <Point> hull; hull.resize (2 * n + 1); int k = 0; for (int i = 0;i < n;++i) { while (k >= 2 && dcmp (cross (hull[k - 1] - hull[k - 2],P[i] - hull[k - 2])) <= 0) --k; hull[k++] = P[i]; } for (int i = n - 2,t = k;i >= 0;--i) { while (k > t && dcmp (cross (hull[k - 1] - hull[k - 2],P[i] - hull[k - 2])) <= 0) --k; hull[k++] = P[i]; } hull.resize (k - 1); return hull; } LD diameter (vector <Point> &P) { int n = P.size (); if (n <= 1) return 0; if (n == 2) return len (P[1] - P[0]); LD res = 0; for (int i = 0,j = 2;i < n;++i) { while (dcmp (cross (P[(i + 1) % n] - P[i],P[j] - P[i]) - cross (P[(i + 1) % n] - P[i],P[(j + 1) % n] - P[i])) <= 0) j = (j + 1) % n; res = max (res,max (len (P[j] - P[i]),len (P[j] - P[(i + 1) % n]))); } return res; } template <typename Line = pair <Point, Point>> LD half_plane (vector <Line> &Vec) { int n = Vec.size (); auto get_angle = [&] (Line line) -> LD {return atan2 (line.second.y - line.first.y,line.second.x - line.first.x);}; sort (Vec.begin (),Vec.end (),[&] (Line A,Line B) { LD angA = get_angle (A),angB = get_angle (B); return fabs (angA - angB) > eps ? angA < angB : cross (A.second - A.first,B.second - A.first) < 0; }); int h = 1,t = 0; auto check = [&] (Line x,Line y,Line z) -> bool { Point P = ll_inter_pt (y.first,y.second,z.first,z.second); return dcmp (cross (x.second - x.first,P - x.first)) < 0; }; vector <Line> q (n + 10);q[++t] = Vec[0]; for (int i = 1;i < n;++i) { if (get_angle (Vec[i]) - get_angle (Vec[i - 1]) < eps) continue; while (h < t && check (Vec[i],q[t],q[t - 1])) --t; while (h < t && check (Vec[i],q[h],q[h + 1])) ++h; q[++t] = Vec[i]; } while (h < t && check (q[h],q[t],q[t - 1])) --t; q[++t] = q[h]; vector <Point> p; for (int i = h;i < t;++i) p.push_back (ll_inter_pt (q[i].first,q[i].second,q[i + 1].first,q[i + 1].second)); return area (p); } vector <Point> minkowski (vector <Point> &vecA,vector <Point> &vecB) { int n = vecA.size (),m = vecB.size (); vector <Point> A (n),B (m),C {vecA[0] + vecB[0]}; for (int i = 0;i < n;++i) A[i] = vecA[(i + 1) % n] - vecA[i]; for (int i = 0;i < m;++i) B[i] = vecB[(i + 1) % m] - vecB[i]; int posa = 0,posb = 0; while (posa < n || posb < m) { if (posa == n) C.push_back (C.back () + B[posb++]); else if (posb == m) C.push_back (C.back () + A[posa++]); else if (dcmp (cross (A[posa],B[posb])) >= 0) C.push_back (C.back () + A[posa++]); else C.push_back (C.back () + B[posb++]); } return convex_hull (C); }
bool chk_in_cir (Circle C,Point P) {return dcmp (len (P - C.O) - C.r) <= 0;} Point get_cir_pt (Circle C,LD theta) {return {C.O.x + C.r * cos (theta),C.O.y + C.r * sin (theta)};} int chk_lc_inter (Point A,Point B,Circle C) { LD d = dis_seg (C.O,A,B); if (dcmp (d - C.r) == 0) return 0; if (dcmp (d - C.r) > 0) return -1; return 1; } int chk_cc_inter (Circle A,Circle B) { LD d = len (A.O - B.O); if (dcmp (A.r + B.r - d) < 0) return 4; if (dcmp (A.r + B.r - d) == 0) return 3; if (dcmp (fabs (A.r - B.r) - d) == 0) return 1; if (dcmp (fabs (A.r - B.r) - d) > 0) return 0; return 2; } pair <Point,Point> lc_inter (Point A,Point B,Circle C) { Point F = foot (C.O,A,B);LD d = dis (C.O,F); Vector E = (B - A) / dis (A,B); Point P1 = F - E * sqrt (C.r * C.r - d * d); Point P2 = F + E * sqrt (C.r * C.r - d * d); return {P1,P2}; } pair <Point,Point> cc_inter (Circle A,Circle B) { Vector k = B.O - A.O; LD d = len (k); LD alpha = atan2 (k.y,k.x),beta = acos ((A.r * A.r + d * d - B.r * B.r) / (2 * A.r * d)); Point P1 = get_cir_pt (A,alpha - beta),P2 = get_cir_pt (A,alpha + beta); return {P1,P2}; } pair <Point,Point> tan_cir (Point P,Circle C) { LD d = len (C.O - P),theta = asin (C.r / d); Vector E = (C.O - P) / d; Vector P1 = P + (rotate (E,theta) * sqrt (d * d - C.r * C.r)); Vector P2 = P + (rotate (E,-theta) * sqrt (d * d - C.r * C.r)); return {P1,P2}; } Circle tri_incir (Point A,Point B,Point C) { LD a = dis (B,C),b = dis (A,C),c = dis (A,B); Point O = (A * a + B * b + C * c) / (a + b + c); return {O,dis_seg (O,A,B)}; } Circle tri_circum (Point A,Point B,Point C) { LD Bx = B.x - A.x,By = B.y - A.y,Cx = C.x - A.x,Cy = C.y - A.y; LD D = 2 * (Bx * Cy - By * Cx); LD x = (Cy * (Bx * Bx + By * By) - By * (Cx * Cx + Cy * Cy)) / D + A.x; LD y = (Bx * (Cx * Cx + Cy * Cy) - Cx * (Bx * Bx + By * By)) / D + A.y; Point P (x,y); return Circle (P,dis (A,P)); } auto get_tangents (Circle A,Circle B) { vector <pair <Point,Point>> tangents; LD d = len (A.O - B.O),dif = A.r - B.r,sum = A.r + B.r; if (dcmp (d - fabs (dif)) < 0) return tangents; LD base = atan2 (B.O.y - A.O.y,B.O.x - A.O.x); if (dcmp (d - fabs (dif)) == 0) { tangents.push_back ({get_cir_pt (A,base + (A.r < B.r ? pi : 0)),get_cir_pt (A,base + (A.r < B.r ? pi : 0))}); return tangents; } LD theta = acos (dif / d); tangents.push_back ({get_cir_pt (A,base + theta),get_cir_pt (B,base + theta)}); tangents.push_back ({get_cir_pt (A,base - theta),get_cir_pt (B,base - theta)}); if (dcmp (d - sum) == 0) tangents.push_back ({get_cir_pt (A,base),get_cir_pt (A,base)}); if (dcmp (d - sum) > 0) { theta = acos (sum / d); tangents.push_back ({get_cir_pt (A,base + theta),get_cir_pt (B,base + theta + pi)}); tangents.push_back ({get_cir_pt (A,base - theta),get_cir_pt (B,base - theta + pi)}); } return tangents; } LD tri_cir_area (Point A,Point B,Circle C) { Vector OA = A - C.O,OB = B - C.O; LD S = cross (OA,OB),sign = dcmp (cross (OA,OB)) > 0 ? 1 : -1; bool da = dcmp (len (OA) - C.r) < 0,db = dcmp (len (OB) - C.r) < 0; if (dcmp (S) == 0) return 0; if (da && db) return S * 0.5; if (!da && !db) { if (chk_lc_inter (A,B,C) == 1) { auto [P1,P2] = lc_inter (A,B,C); Vector OP1 = P1 - C.O,OP2 = P2 - C.O; if (dis (A,P1) > dis (A,P2)) swap (P1,P2); return cross (OP1,OP2) * 0.5 + sign * 0.5 * C.r * C.r * (angle (OA,OP1) + angle (OB,OP2)); } else return sign * 0.5 * C.r * C.r * angle (OA,OB); } else { auto [P1,P2] = lc_inter (A,B,C); if (chk_on_seg (P2,A,B)) swap (P1,P2); Vector OP1 = P1 - C.O; if (dcmp (len (OA) - C.r) < 0) return cross (OA,OP1) * 0.5 + sign * 0.5 * C.r * C.r * angle (OP1,OB); else return cross (OP1,OB) * 0.5 + sign * 0.5 * C.r * C.r * angle (OP1,OA); } } LD cc_area (Circle C1,Circle C2) { int op = chk_cc_inter (C1,C2); if (op <= 1) return pi * min (C1.r,C2.r) * min (C1.r,C2.r); else if (op == 4) return 0; else { LD d = dis (C1.O,C2.O); LD alpha = 2 * acos ((C1.r * C1.r - C2.r * C2.r + d * d) / (2 * C1.r * d)); LD beta = 2 * acos ((C2.r * C2.r - C1.r * C1.r + d * d) / (2 * C2.r * d)); return 0.5 * (C1.r * C1.r * (alpha - sin (alpha)) + C2.r * C2.r * (beta - sin (beta))); } }
|