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e (16 points) The Newsvendor’s Problem: MLE + Convex Optimization
A newspaper vendor faces the task of determining the optimal quantity of newspapers
to stock, given uncertain demand D). The cost structure for ordering newspapers is as
follows: the first twelve copies incur a cost of $8 per copy, while any additional copies
beyond twelve incur a cost of $5 per copy. Each sold copy yields a revenue of $10 for
the vendor, while each unsold copy has a salvage value of $2. Remark: for ease of
analysis, we allow the vendor to order a non-integer number of copies.

(a) (4 points) Given that the demand D follows a uniform distribution with a sup-
port of [, 26], where 6 is unknown, the objective is to estimate the maximum like-
lihood estimator (MLE) of 6. Five samples of D are provided: {12, 15,13, 20, 14}.
Calculate the MLE of 6. Explain the result in detail.

(b) (8 points) Assuming that D follows a uniform distribution with a support of
6,20], where 6 is the MLE obtained in (a), calculate the vendor’s optimal order

decision. Explain the result in detail.

(c) (4 points) For (b), what’s the vendor’s optimal order decision, assuming that the
vendor can only order an integer number of copies? Explain the result in detail.
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(10 points) Gradient Descent Method

Let’s [maximize fhe function f(z) = —z°/2 + x through the gradient descent method.
We fix the learning rate in the algorithm as a constant, a. Assume that the initial
value of z is z(® = 2 and z is the value of z after the ¢-th iteration of gradient

descent. The stoping rule is [z(*t1) — z()| < €, where € is a non-negative constant.

axp (-0 x* -p™ ) K )(
|+ QAP (~pVy*-p'™)
2xp (-0 xF -pH)) Iv

I+ @Ap (-pUy-p)

(a) Let € = 1/1000. In each of the following situations will the final output be the

optimal solution? Explain the reasons.
1. (1 point) a = U.

ii. (1 point) a = 1.
iii. (1 point) a = 2.
iv. (2 points) a = 1/2.
(b) (5 points) Let € = 0. For what range of o will lim¢_,c ¥ converge to the optimal
solution? Explain the reasons.
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[12 points]Suppose we would like to use the K-means algorithm and L2-norm distance
(Euclidian distance) to cluster the 8 data points given in Figure 3 below into K = 3
clusters. The L2-norm distance between points x = (z1,z2) and y = (y1,¥2) is d(x,y) =
v (z1 —y1)% + (z2 — y2)2. The coordinates of the data points are:

8) z2=(2,5) z*=(1,2) z*=(5,8)
3 2¥=64) 2'=1(8,4) x*={(4,7)
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